

General Certificate of Education Advanced Subsidiary Examination June 2013

Mathematics

MPC2

Unit Pure Core 2

Monday 13 May 2013 1.30 pm to 3.00 pm

For this paper you must have:

the blue AQA booklet of formulae and statistical tables.
 You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

- 1 A geometric series has first term 80 and common ratio $\frac{1}{2}$.
 - (a) Find the third term of the series. (1 mark)
 - **(b)** Find the sum to infinity of the series. (2 marks)
 - (c) Find the sum of the first 12 terms of the series, giving your answer to two decimal places. (2 marks)
- **2** The diagram shows a sector *OAB* of a circle with centre *O*.

The radius of the circle is 20 cm and the angle AOB = 0.8 radians.

(a) Find the length of the arc AB.

(2 marks)

(b) Find the area of the sector OAB.

(2 marks)

(c) A line from B meets the radius OA at the point D, as shown in the diagram below.

The length of BD is 15 cm. Find the size of the **obtuse** angle ODB, in **radians**, giving your answer to three significant figures. (4 marks)

- **3 (a) (i)** Using the binomial expansion, or otherwise, express $(2+y)^3$ in the form $a+by+cy^2+y^3$, where a, b and c are integers. (2 marks)
 - (ii) Hence show that $(2+x^{-2})^3 + (2-x^{-2})^3$ can be expressed in the form $p+qx^{-4}$, where p and q are integers. (3 marks)
 - **(b) (i)** Hence find $\int \left[(2+x^{-2})^3 + (2-x^{-2})^3 \right] dx$. (2 marks)
 - (ii) Hence find the value of $\int_{1}^{2} \left[(2 + x^{-2})^3 + (2 x^{-2})^3 \right] dx$. (2 marks)
- 4 (a) Sketch the graph of $y = 9^x$, indicating the value of the intercept on the y-axis. (2 marks)
 - Use logarithms to solve the equation $9^x = 15$, giving your value of x to three significant figures. (2 marks)
 - (c) The curve $y = 9^x$ is reflected in the y-axis to give the curve with equation y = f(x).

 Write down an expression for f(x).
- Use the trapezium rule with five ordinates (four strips) to find an approximate value for $\int_0^2 \sqrt{8x^3 + 1} \, dx$, giving your answer to three significant figures. (4 marks)
 - (b) Describe the single transformation that maps the graph of $y = \sqrt{8x^3 + 1}$ onto the graph of $y = \sqrt{x^3 + 1}$. (2 marks)
 - (c) The curve with equation $y = \sqrt{x^3 + 1}$ is translated by $\begin{bmatrix} 2 \\ -0.7 \end{bmatrix}$ to give the curve with equation y = g(x). Find the value of g(4).

4

6 A curve has the equation

$$y = \frac{12 + x^2 \sqrt{x}}{x}, \quad x > 0$$

- (a) Express $\frac{12 + x^2 \sqrt{x}}{x}$ in the form $12x^p + x^q$. (3 marks)
- **(b) (i)** Hence find $\frac{dy}{dx}$. (2 marks)
 - (ii) Find an equation of the normal to the curve at the point on the curve where x = 4.

 (4 marks)
 - (iii) The curve has a stationary point P. Show that the x-coordinate of P can be written in the form 2^k , where k is a rational number. (3 marks)
- 7 The *n*th term of a sequence is u_n . The sequence is defined by

$$u_{n+1} = pu_n + q$$

where p and q are constants.

The first two terms of the sequence are given by $u_1 = 96$ and $u_2 = 72$.

The limit of u_n as n tends to infinity is 24.

(a) Show that
$$p = \frac{2}{3}$$
. (4 marks)

(b) Find the value of
$$u_3$$
. (2 marks)

- 8 (a) Given that $\log_a b = c$, express b in terms of a and c. (1 mark)
 - By forming a quadratic equation, show that there is only one value of x which satisfies the equation $2\log_2(x+7) \log_2(x+5) = 3$. (6 marks)

- **9 (a) (i)** On the axes given below, sketch the graph of $y = \tan x$ for $0^{\circ} \le x \le 360^{\circ}$.
 - (ii) Solve the equation $\tan x = -1$, giving all values of x in the interval $0^{\circ} \le x \le 360^{\circ}$.
 - **(b) (i)** Given that $6 \tan \theta \sin \theta = 5$, show that $6 \cos^2 \theta + 5 \cos \theta 6 = 0$. (3 marks)
 - (ii) Hence solve the equation $6 \tan 3x \sin 3x = 5$, giving all values of x to the nearest degree in the interval $0^{\circ} \le x \le 180^{\circ}$. (6 marks)

Copyright © 2013 AQA and its licensors. All rights reserved.

